The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has MOS of size 9, 11, 13, 15, 17... which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
The sensamagic clan tempers out the sensamagic comma, 245/243, a triprime comma with no factors of 2. |0 -5 1 2> to be exact. There are a number of linear temperaments in the clan (magic, father, sensi, godzilla, superpyth, octacot, rodan, hedgehog, clyde, shrutar, sidi) but they've mostly been discussed elsewhere. Tempering out 245/243 alone leads to a rank three temperament for which 283edo is the optimal patent val.
Bohpier
Comma: 1220703125/1162261467POTE generator: ~27/25 = 146.476
Map: [<1 0 0|, <0 13 19|]
EDOs: 8, 41, 131, 172, 213c
Badness: 0.8605
7-limit
Commas: 245/243, 3125/3087POTE generator: ~27/25 = 146.474
Map: [<1 0 0 0|, <0 13 19 23|]
Wedgie: <<13 19 23 0 0 0||
EDOs: 41, 49, 90, 139
EDTs: 13
Badness: 0.0682
11-limit
Commas: 100/99, 245/243, 1344/1331POTE generator: ~12/11 = 146.545
Map: [<1 0 0 0 2|, <0 13 19 23 12|]
EDOs: 41, 90e, 131e
Badness: 0.0339
13-limit
Commas: 100/99, 144/143, 245/243, 275/273POTE generator: ~12/11 = 146.603
Map: [<1 0 0 0 2 2|, <0 13 19 23 12 14|]
EDOs: 41, 90ef, 131ef, 221bdeff
Badness: 0.0249
Music
By Chris Vaisvilhttp://micro.soonlabel.com/bophier/bophier-1.mp3
http://micro.soonlabel.com/bophier/bophier-12equal-six-octaves.mp3
Sensa
Commas: 245/243, 65625/65536POTE generator: ~28/27 = 55.122
Map: [<1 2 2 4|, <0 -9 7 -26|]
Wedgie: <<9 -7 26 -32 16 80||
EDOs: 22, 43, 65, 87, 109, 196, 283
Badness: 0.0887
11-limit
Commas: 245/243, 385/384, 4000/3993POTE generator: ~28/27 = 55.126
Map: [<1 2 2 4 3|, <0 -9 7 -26 10|]
EDOs: 22, 43, 65, 87, 109, 196, 283
Badness: 0.0358
13-limit
Commas: 245/243, 352/351, 385/384, 625/624POTE generator: ~28/27 = 55.138
Map: [<1 2 2 4 3 2|, <0 -9 7 -26 10 37|]
EDOs: 22, 43, 65, 87, 109, 196, 283
Badness: 0.0317
Salsa
Commas: 245/243, 32805/32768POTE generator: ~128/105 = 351.049
Map: [<1 1 7 -1|, <0 2 -16 13|]
Wedgie: <<2 -16 13 -30 15 75||
EDOs: 17, 24, 41, 106d, 147d, 188cd, 335cd
Badness: 0.08015
11-limit
Commas: 243/242, 245/242, 385/384POTE generator: ~11/9 = 351.014
Map: [<1 1 7 -1 2|, <0 2 -16 13 5|]
EDOs: 17, 24, 41, 106d, 147d
Badness: 0.0394
13-limit
Commas: 105/104, 144/143, 243/242, 245/242POTE generator: ~11/9 = 351.025
Map: [<1 1 7 -1 2 4|, <0 2 -16 13 5 -1|]
EDOs: 17, 24, 41, 106df, 147df
Badness: 0.0310
Pycnic
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has MOS of size 9, 11, 13, 15, 17... which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.Commas: 245/243, 525/512
POTE generator: ~45/32 = 567.720
Map: [<1 3 -1 8|, <0 -3 7 -11|]
Wedgie: <<3 -7 11 -18 9 45||
EDOs: 17, 19, 55c, 74cd, 93cd
Badness: 0.0737
Cohemiripple
Commas: 245/243, 1323/1250POTE generator: ~7/5 = 549.944
Map: [<1 7 11 12|, <0 -10 -16 -17|]
Wedgie: <<10 16 17 2 -1 -5||
EDOs: 24
Badness: 0.1902
11-limit
Commas: 77/75, 243/242, 245/242POTE generator: ~7/5 = 549.945
Map: [<1 7 11 12 17|, <0 -10 -16 -17 -25|]
EDOs: 24
Badness: 0.0827
13-limit
Commas: 66/65, 77/75, 147/143, 351/350POTE generator: ~7/5 = 549.958
Map: [<1 7 11 12 17 14|, <0 -10 -16 -17 -25 -19|]
EDOs: 24
Badness: 0.0499
Superthird
Commas: 245/243, 78125/76832POTE generator: ~9/7 = 439.076
Map: [<1 13 15 25|, <0 -18 -20 -35|]
Wedgie: <<18 20 35 -10 5 25||
EDOs: 41, 317bc, 358bc, 399bc
Badness: 0.1394
11-limit
Commas: 100/99, 245/243, 78125/76832POTE generator: ~9/7 = 439.152
Map: [<1 13 15 25 6|, <0 -18 -20 -35 -4|]
EDOs: 41, 153be, 194be, 235bce
Badness: 0.0709
13-limit
Commas: 100/99, 144/143, 196/195, 1375/1352POTE generator: ~9/7 = 439.119
Map: [<1 13 15 25 6 24|, <0 -18 -20 -35 -4 -32|]
EDOs: 41
Badness: 0.0528
Magus
Commas: 50331648/48828125POTE generator: ~5/4 = 391.225
Map: [<1 9 3|, <0 -11 -1|]
EDOs: 40, 43, 46, 181c, 227c, 273c, 319c
Badness: 0.3602
7-limit
Commas: 245/243, 28672/28125POTE generator: ~5/4 = 391.465
Map: [<1 9 3 21|, <0 -11 -1 -27|]
Wedgie: <<11 1 27 -24 12 60||
EDOs: 46, 95, 141bc, 187bc, 328bc
Badness: 0.1084
11-limit
Commas: 176/175, 245/243, 1331/1323POTE generator: ~5/4 = 391.503
Map: [<1 9 3 21 23|, <0 -11 -1 -27 -29|]
EDOs: 46, 95, 141bc
Badness: 0.0451
13-limit
Commas: 91/90, 176/175, 245/243, 1331/1323POTE generator: ~5/4 = 391.366
Map: [<1 9 3 21 23 1|, <0 -11 -1 -27 -29 4|]
EDOs: 46, 233bcf, 279bcf
Badness: 0.0430
Leapweek
Commas: 245/243, 2097152/2066715POTE generator: ~3/2 = 704.536
Map: [<1 1 17 -6|, <0 1 -25 15|]
EDOs: 17, 46, 109, 155, 264b, 419b
Badness: 0.14058
11-limit
Commas: 245/243, 385/384, 1331/1323POTE generator: ~3/2 = 704.554
Map: [<1 1 17 -6 -3|, <0 1 -25 15 11|]
EDOs: 17, 46, 109, 264b, 373b, 637be
Badness: 0.0507
13-limit
Commas: 169/168, 245/243, 352/351, 364/363POTE generator: ~3/2 = 704.571
Map: [<1 1 17 -6 -3 -1|, <0 1 -25 15 11 8|]
EDOs: 17, 46, 63, 109, 218f, 373bf
Badness: 0.0327